

Bridging the Gap between Model Explanations in Partially Annotated Multi-label Classification

Problem Definition

full

partial annotation annotation

0

Motivation

Baseline : Assume Negative => Inducing label noise (i.e., false negative)

Youngwook Kim¹, Jae Myung Kim², Jieun Jeong^{1,3}, Cordelia Schmid⁴, Zeynep Akata^{2,5}, Jungwoo Lee^{1,3}

Analysis on Model Explanation

Model's localization ability is not much damaged by false negative labels. => Bridge the Gap !

Proposed Method : BoostLU

¹Seoul National University ²University of Tübingen ³HodooAI Lab ⁴Inria ⁵MPI for Intelligent Systems

Results

Single positive label setting

Methods	VOC	COCO	NUS	CUB
Full Label	89.42	76.78	52.08	30.90
AN	85.89	64.92	42.27	18.31
LS [30]	87.90	67.15	43.77	16.26
ASL [33]	87.76	68.78	46.93	18.81
ROLE [11]	87.77	67.04	41.63	13.66
ROLE + LI [11]	88.26	69.12	45.98	14.86
EM [50]	89.09	70.70	47.15	20.85
EM + APL [50]	89.19	70.87	47.59	21.84
LL-R [21]	88.27	70.70	48.76	19.56
+ BoostLU (Ours)	89.29	72.89	49.59	19.80
LL-Ct [21]	87.79	70.29	48.08	19.06
+ BoostLU (Ours)	88.61	71.78	48.37	19.25
LL-Cp [21]	87.44	70.27	47.92	19.21
+ BoostLU (Ours)	87.81	71.41	48.61	19.34

Large-scale partial label setting (Openimages)

Methods	Group 1	Group 2	Group 3	Group 4	Group 5	All Classes
CNN-RNN [39]	68.76	69.70	74.18	78.52	84.61	75.16
Curriculum Labeling [13]	70.37	71.32	76.23	80.54	86.81	77.05
IMCL [17]	70.95	72.59	77.64	81.83	87.34	78.07
P-ASL [2]	73.19	78.61	85.11	87.70	90.61	83.03
LL-R [21]	77.76	79.07	81.94	84.51	89.36	82.53
+ BoostLU (Ours)	79.28	80.81	83.32	85.63	90.27	83.86
LL-Ct [21]	77.76	79.18	81.97	84.46	89.51	82.58
+ BoostLU (Ours)	79.43	80.75	83.41	85.70	90.41	83.94
LL-Cp [21]	77.49	79.22	81.89	84.51	89.18	82.46
+ BoostLU (Ours)	79.53	81.04	83.40	85.85	90.39	84.04

HP Sensitivity

References

- [1] Zhou et al. Learning Deep Features for Discriminative Localization. CVPR 2016
- [2] Zhang et al. Adversarial Complementary Learning for Weakly Supervised Object Localization. CVPR 201 [3] Kim et al. Large Loss Matters in Weakly Supervised Multi-Label Classification. CVPR 2022

